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Note 

A Procedure for the Construction of Voronoi Polyhedra 

1. INTRODUCTION 

There has been recently an increased interest in the use of Voronoi polyhedra as 
a geometrical tool for investigating the structures and properties of a variety of con- 
densed non-crystalline systems. In addition to the earliest work which attempted 
on the basis of the equivalent Voronoi aray, to develop characterisations of the 
disorder in liquids that could be translated into statistical mechanical terms [l-8], a 
number of other applications to a variety of systems have been reported. Kiang [9] 
used the method in discussing the distribution of interstellar matter, while Rahman [2] 
and Finney [6] calculated the Voronoi statistics of the ideal gas in order to check a 
theoretical model which was also applicable to grain growth in metals [lo]. Polyhedral 
statistics have been used very extensively in structural studies of metallic glasses and 
the glass transition [I l-161, with recent stress on characterising the possible onset of 
crystallisation in the soft core model [17] (J. N. Cape, L. V. Woodcock, and J. L. 
Finney, in preparation), and examining the structural changes across the crystal-melt 
interface [18, 191. Recent applications to large, inhomogeneous systems include the 
quantification of packing, environment, molecular area, and solvent accessibility 
of proteins [20-251 and nucleic acids (G. Zaccai, 3. Jacrot, A. V. Westerman and 
J. L. Finney, in preparation). Work has also continued using polyhedral statistics 
as characterisations of both liquids and crystal structures [26-281. 

In view of the extension of the technique, efficient methods of computing the 
equivalent Voronoi polyhedron array have become of prime importance. The only 
algorithm to be published in detail [29] attempts comparisons with other methods. 
We describe here the detailed operation of the methods we developed in 1966. This 
algorithm, which has been applied successfully to homogeneous and heterogeneous 
assemblies with up to 8,000 points, has not been fully described previously in the 
literature. 

2. THE ALGORITHM 

The Voronoi polyhedron associated with a given “centre” i, in an assembly of N 
“centres” is defined as that volume of space containing all points closer to i than to 
any other center j. Thus the bounding surfaces are planes drawn perpendicular to 
intercentre vectors ij at their midpoints; the intersections of these planes form the 
polyhedron edges and vertices. In contrast to the approaches of Brostow rt al. [29] 
and Richards [20], who first define the polyhedron faces, we obtain as a first step the 
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polyhedron vertices. As every point on each bounding plane associated with a given 
pair of centres ij is by definition equidistant from both i and j, the intersection of 
(in general) three planes ij, jk, kl is a point equidistant from the four defining points 
(ijkl). This is a polyhedron vertex whose Cartesian coordinates (xyz) are the solutions 
of the set of simultaneous quadratic equations 

(x, - x)2 + ( y, - y)” + (z, - 2)” == r2 (p = i, j, k, I) ... . (1) 

r is the (identical) distance between each centre (i,j, k, I) and the associated vertex. 
This set of equations reduces to three linear equations in (xyz) which are easily solved. 
A valid vertex must be closer to the centre (ijkl) than to any other centre in the 
assembly; the distances between the solution to (1) and a subset of the total assembly 
which could possibly contain any closer centres are calculated and checked against 
r before a vertex is accepted (see below). 

In moving from the vertices to the polyhedron faces and edges, use is made of the 
index numbers of the four centres (zjkl) associated with each vertex. All (ijkl) com- 
binations for a given centre i are listed, there being one set to each vertex. Centre i 
is common to all vertices associated with polyhedron i and is now ignored. We are 
thus left with M sets of triplets (j,k,Z,J (q = 1, M), one for each vertex ra . All vertices 
common to a given face will have an index in common, which will refer to the neigh- 
bouring centre which together with i defines this face. Removing this index leaves M 
index pairs associated with a single face. These index pairs are then ordered cyclically 
starting from any vertex; two neighbouring vertices joined by an edge will have two 
indices in common. 

A simple example of this vertex sorting process is illustrated by the &faced poly- 
hedron in Fig. 1, for which the vertex indices are listed in Table 1. Centre 1 is contained 
within this polyhedron; each face is labelled with the index number of the neighbouring 
centre which shares the face, while each vertex is labelled with the index numbers 
of the four centres from which it is equidistant. Thus the label 1 occurs in every vertex 
in Table 1. Vertices 1 to 5 have index 2 in common and thus are associated also with 
the face labelled 2. The remaining index pairs have each index in common with 
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FIGURE 1 
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TABLE I 

Vertex Index Table for the Polyhedron of Fig. 1 

Vertex number 
M Four centres associated with the vertex M 

1 I 
2 I 

3 1 

4 1 

5 I 

6 I 

7 1 
8 1 
9 1 

10 1 
11 1 
12 1 

4 

5 

6 

6 

3 

4 

5 

6 

4 

6 

5 

7 

8 

7 

8 

4 

6 

another vertex of the same face. Thus starting with vertex 1 we can immediately 
order the vertices 12543 along neighbouring edges by passing to a vertex with a 
common index. Each index remaining in these pairs must occur at least twice, or 
the polyhedron face will not close (see below). An index occurring more than twice 
indicates a degenerate vertex equidistant from more than the minimum four centres. 
Such cases rarely occur by chance, but are found frequently in crystalline or partly- 
crystalline assemblies, and are dealt with as follows. 

When two vertices are closer than a preset minimum distance Rmrn (which may be 
set with respect to, e.g., computer rounding errors or expected limited accuracy of 
the data) they are replaced by a single “composite vertex” labelled with the set of 
five (rarely more) nonidentical indices which is the union of the index labels of the 
original vertices. The procedure continues as before, though only two of the three 
(rareIy more) vertices remaining after remova of the two common face indices are 
used in tracing out the edge ordering. The remaining vertex (rarely vertices) is ignored. 
This procedure is particularly useful if the assembly is close to a simpler assembly 
-e.g., crystalline with small deformations. By setting Rmin artificially large, the 
crystallinity, which would otherwise be partly masked by the polyhedron complexity 
introduced by the deformations, becomes clear. 

Face areas are calculated by summing over a set of triangular areas: the area of 
face 2 in the example of Fig. I and Table 1 is given by summing the areas (calculated 
trivially from the vertex coordinates) of the three triangles (125), (154), and (143) 
“hinged” at the arbitrary “origin” vertex 1. The volume subtended by the face is 
found from the sum of the volumes of the three tetrahedra formed with the above three 
triangles as bases, the centre 1 of the polyhedron serving as the fourth tetrahedron 
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vertex. The volume of the total polyhedron follows by summation over volumes 
subtended by all faces. A complete topological and quantitative specification of the 
polyhedron is thus obtained. 

3. PROGRAMMING CONSIDERATIONS 

In applying this basically simple approach, a subset of the whole assembly of N 
centres must be selected for the solutions of Eq. (1) for each polyhedron. Otherwise 
the work done would increase as (T), or O(N4) for large N, which would be imprac- 
ticable for most assemblies. Thus a subset of N, centres within a “combination sphere” 
radius R, , centred on the centre whose polyhedron is to be elucidated, is extracted, 
and Eq. (1) solved for all possible combinations of three of this subset with the central 
centre. This cuts the work associated with vertex solution to O(NC3) for each poly- 
hedron, or O(NC3N) in all. 

The choice of optimum R, is made on the basis of results from trial runs. For the 
homogeneous dense single-component systems such as liquids and glasses that have 
been the major object of polyhedron studies to date, we take R,- 1.60, , where D, 
is the closest approach of two “atoms” in the molecular assembly. Referring to the 
radial distribution functions of such assemblies [4,6] we find about NC = 16 centres 
occur within a combination sphere so defined; this is -F + 2, where F is the average 
number of faces per polyhedron in such systems. 

One further set of tests is required. Not every solution of Eq. (1) for all possible 
(jkl) from the subset NC will be a valid vertex: only those closer to the centre i than 
to any other centre chosen from the complete assembly of N are acceptable. To speed 
up this checking procedure, a second subset of N, centres within a “search sphere” 
radius R, from the centre i is set up during the identification of the combination subset 
N, . In principle for all possibly significant members of N,9, R, - 2R, ; in practice, 
vertices rarely occur further than 0.9D, from centre i, and R, - 2.00, is generally 
used. This corresponds to about N, = 45 checks that need to be made for each trial 
vertex, although only a fraction of these need be made before an invalid vertex is 
detected. 

The self-checking nature of the vertex-elucidation procedure prevents any errors 
arising from inadequate choice of R, or R, . The method used to order vertices round 
a face fails to close if N, is not sufficient; when this occurs, R, and R, are incremented 
slightly and the procedure restarted. Moreover, for the checking of possible vertices 
against the subset N, to be exhaustive, r (Eq. (I)) must be less than R,/2. In hetero- 
geneous systems this condition may occasionally fail to be fulfilled, in which case 
R, is increased automatically as necessary. In fact the program can be modified to 
optimise the chaise of R, automatically as the polyhedron elucidation proceeds. 

Similarly, a polyhedron at the surface may fail to close. Alternatively a surface 
polyhedron may be found which is distorted from what it would be were the centre 
embedded within a large equivalent assembly. These problems are avoided by placing 
additional points at the surface (e.g., by placing further model atoms at tetrahedral 
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surface sites), and rejecting those polyhedra which involve these points. Such pro- 
cedures are clearly unnecessary when examining assemblies with periodic boundaries. 

Tt should be emphasised that R, and R, are quantities whose optimum values are 
fixed empirically for a given system to reduce the computing time required. Our 
theoretical understanding of non-crystalline dense packings of hard spheres, for 
example, is insufficient to allow us to fix either search or combination radius to that 
(maximum) value required to ensure all polyhedron vertices will be elucidated using 
a single value of each of these quantities. It would not be particularly useful to do so 
even if we could; the systems we examine by this technique show local variations so 
that using just that value of, say, R, which would ensure no further checks on vertices 
would be required would of necessity mean that the subset N, would be too large 
for most of the centres in the assembly. Provided that an initially low value of R, 
is recognised in the program without giving rise to any errors in the resultant poly- 
hedron, an empirical, variable choice of this radius is to be preferred over a rigidly- 
fixed, and necessarily inefficient one. 

The procedure described in reference [29] runs at a reasonable speed without the 
need to make such empirical choices. Savings in both the time and storage require- 
ments of that procedure may be possible through the use of similar devices. 

4. TIME AND STORAGE REQUIREMENTS 

We can estimate the expense of the major computing operations, using as a basic 
time unit that required to test whether two given points in three-dimensional space 
are closer than a given distance. Each solution of Eq. (1) requires about ten such units, 
resulting in the factor of ten in operation (b) below. 

(a) Selection of “combination” and “search” subsets N, and N, for the whole 
assembly of N centres is proportional to N2. 

(b) Solving Eq. (1) for possible vertices using subset N, . This is 
N 1 Ne!/3!(Ne - 3)! I x 10, or -3NN, for all N polyhedra. 

(c) Checking that trial vertices from (b) are no closer to any member of the 
N, subset. Although Nc3/3 trial vertices must be checked, few will require checking 
against more than a fraction of N,? before they are rejected. A reasonable time estimate 
is -Nc3N,/6 per polyhedron. 

(d) Vertex sorting and area and volume calculations. This work is minor 
compared with (a)-(c) and increases linearly with N. 

When typical values of N, and N,? are considered, these time estimates are com- 
parable with those estimated by Brostow et al [29] for their procedure, whose major 
contributions increase as O(Nz log N) and O(Nc3N) (compare operations (a), and 
(b) + (c) respectively). For well-behaved systems, taking N, N 16, N, N 45, 
operations (b) and (c) are the major time-consuming steps, with (c) involving 2-3 
times the work of (b). For N 2 4000, the selection of subsets (operation (a)) begins 
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to be comparable. For less well-behaved heterogeneous systems such as proteins and 
nucleic acids, N, may reach 25, with a corresponding increase in N,? ; as the work 
done depends more critically on polyhedron size, this considerably increases the time 
consumed over the well-behaved dense liquids and glasses by a factor of about 2-6. 

Further modifications are possible [30] to reduce the time consumption of steps (a) 
and (b) for sufficiently large numbers of points in the array. Selection of subsets 
N, and N, can be made from subsets into which the whole array is earlier partitioned, 
for example by using standard boxing procedures. Operation (b), which consumes the 
major portion of the central processor time, could be speeded up by further parti- 
tioning of the subset N, into smaller subsets N,, , each corresponding to every possible 
of j within N, . We then need to solve Eq. (1) for k and I values chosen from the 
reduced set N,, . Additional searching time would be required to set up the subsets 
N,, for each chosen centre j (i given); we estimate savings of 30 % could accrue 
from choosing members of N,, to be those (kl) within the hemisphere with vector 
ij parallel to the axis of revolution of the hemisphere, radius R, . 

Concerning storage requirements, because of our applications to large and hetero- 
geneous assemblies, we have preferred to buy low storage with increased time con- 
sumption. With our procedure, each vertex is elucidated independently four times, 
once for each of the (generally) four polyhedra in which it occurs. To store each 
vertex in terms of its four indices would, for a well-behaved assembly with an average 
polyhedron of, say, fifteen faces, and hence 26 vertices, require 26 x 4N/4 integer 
storage locations. For an assembly of 5,000 centres using half-word integers on an 
IBM370 we would thus require -260kb; for more heterogeneous systems we would 
expect around 46 vertices per polyhedron, resulting in a prohibitive fast core penalty 
of about 460kb. Additional computing necessary for searching existing vertices 
would cut down significantly on the time saved by elucidating each polyhedron 
once only. Storing faces only would require half the above amount of store, but with 
duplicating computing to derive vertices therefrom. 

This program, written in standard FORTRAN TV, has been used effectively 
since 1966 on a variety of assemblies from crystals, through simple dense homogeneous 
non-crystalline assemblies such as liquids and glasses, to the more heterogeneous 
proteins and nucleic acids. A two-dimensional version is also operative. 
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